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Abstract

Detailing which open chromatin regions are
bound by a target transcription factor (TF) is
highly important for understanding gene reg-
ulation. This remains a difficult task as TF
binding sites (TFBSs) depend on the physical
properties of DNA. As developments in struc-
tured data mining have allowed for large corpi
of these properties to be readily available for
use, a natural step is in utilizing them to predict
whether an open chromatin region is bound. In
this paper, we argue that for chromatin regions
that cannot be predicted solely using TF motif
scores require more enriched input from se-
quence and structural data. We compare differ-
ent Machine Learning methodologies to infer
the complex relationships between the enriched
data and TFBSs. In addition, we provide a ro-
bust, modular, and extensible framework on our
GitHub1.

1 Introduction

Transcription factors are a class of proteins which
regulate gene expression by binding specific DNA
motifs known as transcription factor binding sites
(TFBSs) (Lambert et al., 2018). Whether a TFBS
is bound depends strongly on the cellular context.
In certain cancers, altered cell states may arise
through changes in DNA methylation and histone
modifications, which modify chromatin accessibil-
ity. Consequently, CCCTC-binding factor (CTCF)
affinity to its binding sites can be altered, despite
both the underlying motif and TF sequences re-
maining unchanged (Gridina and Fishman, 2022).

In this manner, the same TFBS may be bound
in one condition and unbound in another, driven
by changes in chromatin accessibility, DNA shape,
or other structural factors (Levo et al., 2015). As
such, alterations in TF-DNA affinity underlie nu-
merous diseases and distinguishing bound from un-
bound TFBSs is important in understanding disease

1https://github.com/ehuan2/tf-binding

regulatory mechanisms. Although experimental
techniques such as chromatin immunoprecipitation
coupled to sequencing (ChIP-seq) provide high-
throughput maps of bound sites, they remain costly
and condition-specific, motivating the need for
accurate computational prediction methods (Park,
2009).

Traditional approaches rely on sequence-level
motif scores derived from Position Weight Matri-
ces (PWMs), typically inferred from enriched mo-
tifs within ChIP-seq peaks. However, PWM-based
scores alone often fail to explain in vivo binding be-
cause they ignore chromatin context and structural
properties of the underlying DNA (Maienschein-
Cline et al., 2012). Computational tools such as
DNAShape and GBShape predict local DNA geom-
etry at single-nucleotide resolution, including struc-
tural features such as minor groove width (MGW),
propeller twist (ProT), helix twist (HelT), hydroxyl
radical cleavage intensity (OC2), and roll (Zhou
et al., 2013; Chiu et al., 2015). These structural fea-
tures capture subtle variations in the geometry of
the DNA double helix which influence how acces-
sible and favorable the DNA is for protein binding
(Inukai et al., 2017). Because these shape varia-
tions often correlate with regions of more open or
flexible chromatin, they provide complementary
information to PWM scores, allowing models to
better distinguish bound sites from unbound sites
that share similar motif sequences.

In this paper, we explore how DNA structural
features can enrich the prediction of whether a can-
didate site is bound by a TF. We demonstrate this
on the PAX5 TF in the GM12878 lymphoblast cell
line. We show that both classical Machine Learn-
ing (ML) methods and modern deep learning ap-
proaches greatly improve on simple regression by
better leveraging sequence information, with mod-
est improvement from including structural informa-
tion.

https://github.com/ehuan2/tf-binding


1.1 Challenges

A recurrent theme across the literature is that motif
strength alone is insufficient in explaining in vivo
TF binding. We reproduce this trend on PWM
scores derived from PAX5. Comparing PWM
scores on all positive samples to scores on genome-
wide negatives yields clearly separable distribu-
tions which should be easily distinguishable by a
linear classifier (Fig. 1). However, when negatives
are restricted to overlapping regions which contain
the PAX5 motif but show no ChIP-seq enrichment
(i.e. sequences that are motif-positive but unbound)
the score distributions become far less distinguish-
able (Fig. 2).

Figure 1: Distribution of top scores for genome-wide
negative samples (forward and reverse) vs. the positive
samples

Figure 2: Distribution of top scores for restricted set of
overlapping negative samples (forward and reverse) vs.
the positive samples

We further demonstrate the limitations of motif
strength by evaluating a simple linear classifier
constructed directly from kernel density estimates
of the PWM score distributions. Despite yielding a
modest AUROC of 0.70 and AUPRC of 0.52, the
overall performance remained limited (accuracy of
0.61, precision of 0.44, recall of 0.74, and F1 score

of 0.56). These results reinforce that even though
PWM scores can partially separate bound from
unbound TFBSs, they fail to capture more nuanced
factors that influence TF binding, motivating the
inclusion of additional features such as DNA shape.

1.2 Objectives

In this report, we aim to evaluate the extent to
which DNA structural features improve TFBS pre-
diction beyond what is captured by sequence mo-
tifs alone. Building on our observation that PWM
scores only partially distinguish bound from un-
bound sites, we use PAX5 in GM12878 cells as a
case study to systematically compare several clas-
sifiers and determine whether structural features
improve predictive performance.

We ultimately show that while classic ML meth-
ods do improve upon linear classifiers, when using
general structural information, they remain limited
in fully leveraging that data. Similarly, we show
that deep learning techniques can match classic ML
methods, but require further exploration.

2 Background

2.1 Case Study: PAX5

PAX5 is a paired-box TF that plays a central role
in B-cell lineage commitment and maintenance.
It regulates a broad network of genes acting as
both an activator and repressor, and often cooper-
ates with other B-cell-specific factors (Bullerwell
et al., 2021). PAX5 contains a paired DNA-binding
domain composed of two helix-turn-helix (HTH)
subdomains and a linker region which bind three
independent sites on a flexible 15-bp motif (Revilla-
i Domingo et al., 2012). Specifically, the linker
region binds the minor groove while the HTH sub-
domains interact with bases on the major groove.
Each subdomain of PAX5 has relatively low speci-
ficity resulting in the 15-bp motif being highly de-
generate (Revilla-i Domingo et al., 2012). Thus,
successful binding does not depend only on the
sequence but also on the relative positioning of
the paired domains modules and local chromatin
accessibility, proving PWMs alone to be insuffi-
cient. These properties make PAX5 particularly
well-suited for evaluating whether the inclusion
of DNA structural features can provide comple-
mentary information and improve predictive per-
formance.



2.2 Related Work

ML approaches have transformed regulatory ge-
nomics by enabling models to learn complex
sequence-function relationships directly from raw
DNA. Early architectures such as Basset and DanQ
apply convolutional neural networks (CNNs) and
hybrid convolutional-recurrent neural networks
(CNN-RNNs) to extract richer sequence represen-
tations and successfully predict cell-type-specific
chromatin accessibility (Kelley et al., 2016; Quang
and Xie, 2016). While such models do not per-
form TF-specific TFBS prediction, they established
the effectiveness of deep architectures in capturing
higher-order regulatory sequence features.

In parallel to advancements in sequence-based
models, many studies have exploited DNA shape
features to improve classification performance.
Mathelier and colleagues, for example, used a
gradient boosting classifier and reported measur-
able gains when DNA shape features were added
alongside PWMs or raw sequence features (Math-
elier et al., 2016). More recent deep learning ap-
proaches integrate shape directly into the input rep-
resentation, such as CRTPS, which concatenates
DNA-shape channels with one-hot sequence inputs
within a CNN–RNN hybrid model (Wang et al.,
2021).

3 Methodology

3.1 Data

We focus on predicting the binding of PAX5 in
GM12878 lymphoblastoid cells. All input data
was provided through the course repository and
linked public resources. We used five main data
sources; i. Human reference genome (hg19), ii. Ac-
tive regulatory regions in GM12878 (ChIP-seq), iii.
Genome-wide motif hits for multiple TFs (Factor-
book), iv. PWM for PAX5, and v. Predicted DNA
structural properties (MGW, HelT, ProT, OC2, and
Roll from GBShape). More details on our available
preprocessed data can be found on the GitHub’s
ReadMe2. While training, we ensure that 20% of
the data is held-out for testing purposes only, while
using the same data split (set by a random seed)
across models.

3.1.1 Interval Construction and Labeling
The preprocessing code provided in the repository
extracts candidate genomic sequences from open

2https://github.com/ehuan2/tf-
binding/blob/main/ReadMe.md

chromatin regions to label them as positive or nega-
tive intervals. We defined positive intervals as win-
dows that overlap both a PAX5 motif hit and a cor-
responding PAX5 ChIP-seq peak. Negative inter-
vals were restricted by only taking GM12878 regu-
latory regions that contain a PAX5 motif but show
no ChIP-seq evidence of binding, done through a
three-step filtering process:

1. We take all open regions that do not overlap
with any positive interval.

2. We find the best TF-length interval according
to its motif score on both the forward and
reverse strands.

3. We filter out any remaining intervals whose
motif score does not overlap with the range of
possible positive interval motif scores shown
in Figure 2.

This ensures that the negative samples are non-
trivial, as they share the correct motif sequence
but remain unbound in vivo, providing a more bi-
ologically realistic and challenging classification
task.

3.1.2 Feature Representation
Each interval sample is represented as a fixed-
length window around a candidate binding site us-
ing a combination of sequence, DNA shape, and
motif features. For the sequence-based represen-
tation, we used a simple one-hot encoding of the
nucleotides (A,C,G,T) across the window. For the
structural representation, we used the precomputed
bigWig tracks for MGW, Roll, HelT, OC2, and
ProT, then extracted the corresponding values over
each interval, of which we allow the extension of
its context window on either side of the TF of both
positive and negative samples to capture flanking
shape information. This information is known to
influence binding stability and accessibility. Fi-
nally, we include the PWM-based motif score for
each nucleotide in the window, as well as the to-
tal motif score (single aggregate number). Then,
on a per-model basis, we concatenate these fea-
tures differently. For classical ML methods, we
use a classifier on the single-concatenated vector
([one-hot (sequence), DNAShape features,
PWM scores]), while concatenating differently or
separating for deep learning models.

3.1.3 Preprocessing and Configuration
The GitHub repository was built to be modular,
extensible, and easy to use. To this end, we use

https://github.com/ehuan2/tf-binding/blob/main/ReadMe.md
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MLflow (Chen et al., 2020) framework to capture
multiple different runs of models, and allowing
for easy model configuration through the use of
YAML files. These configuration files can be used
to specify the TF of interest (PAX5), the list of
structural features to use (MGW, Roll, HelT, ProT,
OC2), and flags that enable ablation studies (such
as not including sequence data). Using the pro-
vided dataloader, the PAX5 dataset is split into
36,362 training intervals and 9,091 test intervals,
maintaining the positive/negative class imbalance
determined by the preprocessing pipeline.

3.2 Classifiers

3.2.1 Classical ML: Scikit-learn Models

We implemented traditional ML models as scikit-
learn (v1.7.2) pipelines (Pedregosa et al., 2012).
These include logistic regression, gradient-boosted
decision trees via XGBoost (v3.1.2) (Chen and
Guestrin, 2016), Random Forests (Breiman, 2001),
and Support Vector Machines (SVMs). This was
done for completeness to benchmark performance
across simple non-linear, kernel-based, and ensem-
ble architectures. All models were fit on the full
training set and evaluated on the held-out test set.
For model specific details, refer to the GitHub mod-
els’ folder.

3.2.2 Deep Learning: PyTorch Models

Deep learning models were implemented in Py-
Torch (v2.9.1) (Paszke et al., 2019). Based off out-
put from the traditional ML models, we found that
raw one-hot encoded sequence inputs contributed
minimally beyond PWM and DNA shape features.
Additionally, these inputs scale poorly with deeper
architectures. Therefore, PyTorch models were
trained using only DNA structural features and
PWM scores.

We also test simple multi-layer perceptron
(MLP), 1D Convolutional Neural Network (CNN),
2D-CNN, and variational autoencoder (VAE)
frameworks to assess whether increased model ca-
pacity or alternative feature transformations im-
prove performance. We focus on MLPs and 1D-
CNNs. MLPs provide the simplest architecture,
while 1D-CNNs are the clearest method to best
utilize localized patterns in structural features for
TFBS prediction. Full implementation details for
all models are provided in Appendix A.2.

3.3 Evaluation Metrics
We assessed model performance using several stan-
dard binary classification metrics computed from
the predicted probabilities and thresholded class
labels. These include accuracy, F1 score, and the
area under both the receiver operating characteris-
tic curve (AUROC) and the precision–recall curve
(AUPRC).

Since our dataset exhibits a moderate class im-
balance (15,023 positives vs. 30,430 negatives),
metrics that directly account for this are particu-
larly informative. In this context, AUPRC provides
a more realistic depiction of performance than accu-
racy or AUROC as it emphasizes each model’s abil-
ity to correctly identify true binding events despite
the imbalance. Similarly, F1 score, the harmonic
mean between precision and recall, is critical for
our application where we place high value on main-
taining a strong true positive rate while minimizing
false negatives.

F1 = 2 · precision · recall
precision + recall

=
TP

TP + 1
2(FP + FN)

From a biological perspective, correctly identi-
fying true TF binding events is the most important
task as false negatives can obscure meaningful reg-
ulatory interactions and compromise downstream
conclusions. Accuracy and AUROC remain useful
for overall characterization, but as they are more
sensitive to imbalanced classes, they are interpreted
primarily as secondary metrics. For each run, we
additionally generate and save the ROC and PR
curves.

4 Results

In our results, we first show that solely using motif
probability information results in a sub-par classi-
fier, and that by including both sequence informa-
tion and more importantly structural information, a
stronger classifier can be built. At the same time,
we argue that the best traditional ML classifier, XG-
Boost, improves the most by including structural
information as opposed to only using sequence in-
formation, as we see the best F1 score from includ-
ing larger structural contexts. However, this still
only results in modest improvements, motivating
the use of more complex deep learning techniques
that can better leverage this data structure. Overall,
we show that including structural information is
important in TFBS prediction, though remains dif-
ficult to fully exploit. We conclude by motivating

https://github.com/ehuan2/tf-binding/tree/main/src/models
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the development of better robust methods through
deep learning architectures.

4.1 Importance of Structural Information
We ablate on including different types of input data
to our various models, starting from simple motif
and PWM scores, then adding either only sequence
data, structural information, or both. By comparing
the improvements from including each data modal-
ity, we can conclude whether that information is
useful and should be used to further develop better
classifiers.

In particular, Table 1 displays that on average,
the included structure information helps all classi-
cal ML models across all metrics. Of note, struc-
tural data with motif probabilities is the second
best modality, only behind including all data. It
is ahead of sequence with motif probabilities, sug-
gesting that sequence information itself needs to be
supplemented with structural information.

Due to the complexity and the high dimension-
ality of these one-hot encoding sequence data, we
thus decided to not include sequence data in deep
learning techniques (see Section 4.3) to reduce the
complexity of the input. For a more detailed break-
down of each method and their performance across
modalities, see appendix A.1.

It is clear that while structural information pro-
vides the most benefit, its improvement remains
modest, only increasing the F1 score by 0.02 in
comparison from pure motif probability scores for
the best performing method XGBoost. To further
improve accuracy, we need to either enhance our
data or improve upon our modelling techniques.

4.2 Increasing Context Window
Ample data is crucial in ML to ensure models have
enough information to correctly predict specific
cases. To enhance the data that exists, we experi-
ment on increasing the amount of data that is passed
to the model by adding structural information sur-
rounding each candidate TFBS. Specifically we
run ablations on only increasing the context for
structural information and compare its effect on
F1 score. We add structural information from n
base pair positions before and after the TF window
for XGBoost, while maintaining the same PWM
and sequence context length. Notably, adding cor-
responding PWM scores for the extended context
is not relevant as these are motif-specific scores
which are nearly random outside of the core motif
and could even harm performance.

Figure 3: F1 Score for XGBoost on different context
window lengths. Outlined in blue is the performance on
including sequence data, in orange outlines the perfor-
mance of not including it.

As shown in Figure 3, by increasing the con-
text window, XGBoost does improve modestly. In
particular, it improves the most when including se-
quence information as well, meaning that sequence
information is still important to include when con-
sidering larger contexts. There is no clear trend
however, of what context window remains the best,
as there seems to be high variance in the outcome.
The context window that seems to work consis-
tently well for both methods are windows between
20 and 40 base pairs, which seems biologically
plausible considering local effects of DNA shape.
The overall improvement remains marginal with
only 0.02 improvement for F1 score (in compari-
son with 0 context window) when using a context
window of size 5. This motivates the exploration
of more complex models that can better utilize the
given input data.

4.3 Deep Learning Methods

Deep learning techniques attempt to build func-
tion approximators (such as classification labels)
by updating tuneable weights. There are many
architectures, and in Table 2 we compare the best
runs across hyperparameters of different deep learn-
ing models, with XGBoost as a baseline. The re-
sults here suggest that deep learning architectures
can be on-par with classic ML methods, however,
currently do not improve nor overtake them. The
architecture details are found in Appendix A.2, ex-
plaining MLPs, 1D CNNs, 2D CNNs, and VAEs.

In addition to measuring the best runs per model
architecture, we ablate the context window length,
and how much to penalize incorrectly classify-



Mode Accuracy ROC AUC F1 Score PR AUC
Motif Score 0.6751 0.6888 0.3516 0.5019
PWM 0.7098 0.7635 0.4573 0.5822
Structure + PWM 0.7206 0.7849 0.4936 0.6117
Sequence + PWM 0.7119 0.7764 0.4769 0.5921
Structure + Sequence + PWM 0.7265 0.7917 0.5125 0.6226
Mode (XGBoost) Accuracy ROC AUC F1 Score PR AUC
Motif Score 0.6899 0.6999 0.2755 0.5148
PWM Vector + Score 0.7458 0.8148 0.5594 0.6605
Structure + PWM 0.7533 0.8279 0.5815 0.6874
Sequence + PWM 0.7455 0.8183 0.5694 0.6666
Structure + Sequence + PWM 0.7520 0.8277 0.5809 0.6874
Linear Classifier (all data) 0.6082 0.7007 0.5557 0.5165

Table 1: Average scikit-learn model performance, and XGBoost-specific performance across different inputs
modalities. Motif score indicates the scalar PWM score, PWM refers to the joint motif score and per-position PWM
probability, structure refers to all five MGW, HelT, ProT, Roll, and OC2 structural data, and sequence refers to the
one-hot encoding per nucleotide. Bold indicates the best value in each column, and italic indicates the second best.
The final line is the linear classifier results from linearly separating kernel densities as shown in Figure 2.

Arch Ctx Acc ROC-AUC F1 PR-AUC

MLP 5 0.7037 0.7931 0.6276 0.6445
CNN 10 0.6788 0.7789 0.6257 0.6104
2D-CNN 0 0.6622 0.7447 0.6008 0.5624
VAE 0 0.5852 0.5719 0.4230 0.3882

XGBOOST 5 0.7746 0.8469 0.6021 0.7327

Table 2: Best model performance of deep learning archi-
tectures, in comparison with the best run of XGBoost.
Note that ablations were not run on 2D-CNN nor VAE
to find the best context window size.

ing positive samples during training (either no up-
weighting or upweighting by a factor of 2, due to
a ratio of 1:2 positive to negative samples). We
will focus on two methods, the MLP and 1D-CNN.
By training on five epochs for both the MLP and
the CNN, and varying between 0, 5, and 10 con-
text window lengths, we get the following metrics
found in Table 3.

The results suggest that all deep learning tech-
niques should account for class imbalance. While
the accuracies drop, the F1 scores (which are more
important) do tend to improve significantly. Fur-
thermore, the explored deep learning techniques
either cannot utilize context windows well enough,
or that we have not explored enough of the hyper-
parameter space. Which case follows remains an
open question, and requires us to do more careful
hyperparameter tuning, and dive deeper into the
training dynamics of the chosen models.

Arch Ctx Acc ROC-AUC F1 PR-AUC

MLP 0 0.7294 0.7900 0.5572 0.6426
MLP 5 0.7197 0.7872 0.5716 0.6435
MLP 10 0.7272 0.7905 0.5565 0.6401
CNN 0 0.7138 0.7714 0.4696 0.6128
CNN 5 0.7293 0.7881 0.5027 0.6380
CNN 10 0.7208 0.7854 0.4439 0.6322

With upweighting positive classes

MLP 0 0.5923 0.7741 0.6044 0.6134
MLP 5 0.7037 0.7931 0.6276 0.6445
MLP 10 0.6954 0.7827 0.6261 0.6230
CNN 0 0.7146 0.7630 0.5961 0.5238
CNN 5 0.7128 0.7779 0.5965 0.6124
CNN 10 0.6788 0.7789 0.6257 0.6104

Table 3: Model performance across architectures and
context windows, and with upweighting positive inter-
vals to fix the class imbalance.

5 Discussion

In this study, we evaluated how incorporating
nucleotide-resolution DNA structural features in-
fluences TFBS prediction for PAX5 using a range
of traditional ML and deep learning frameworks.
Across all settings, we observed that DNA shape
information provided moderate though consistent
benefits, while additional sequence information
(for traditional ML models only) displayed little
improvement with high variance. Below, we inter-
pret these findings in terms of underlying biology,
model behaviour, and future methodological direc-
tions.



5.1 Biological Interpretation

Generally, our findings align with the known bi-
ology of PAX5. The canonical binding motif of
PAX5 is highly degenerate and may exhibit con-
siderable sequence variability. We expected this
degeneracy to result in the nucleotide sequence it-
self providing a weak or ambiguous signal meaning
many true binding sites may not closely resemble
the consensus PWM score while false sites have an
increased chance of randomly matching the motif
(Mathelier et al., 2016). In contrast, DNA struc-
tural features offered a more stable and biologically
meaningful representation of PAX5 binding pref-
erences. PAX family TFs are known to rely on
local DNA shape to establish favourable TF-DNA
contacts, particularly MGW, roll, and other related
helical parameters (Jolma, 2015). Thus, even when
the PAX5 motif sequence varies, shape features
remain predictive because similar structural con-
formations can arise from diverse nucleotide se-
quences. Additionally, increasing the context win-
dow enabled structural characterization of flanking
regions which are known to influence DNA flexi-
bility and the shape of the binding pocket (Zhou,
2015). However, the benefits of naively including
more structural information through this expanded
window in our analyses remain inconclusive.

5.2 Interpretation of Model Behaviours

5.2.1 Traditional ML Models
Among traditional ML methods, we focus on XG-
Boost as a representative model since it consistently
achieved the strongest performance across all met-
rics. Consistent with our biological interpretation,
structural features contributed more reliably to per-
formance gains than sequence-based features when
each modality was independently included along-
side PWM scores. A more nuanced trend emerges
when we examine how structural features interact
with context window size. While the most biolog-
ically relevant DNA shape information for TFs is
typically confined to around 15 bp surrounding the
core motif, this still results in a relatively small
feature set for training XGBoost (Mathelier et al.,
2016). Extending the structural context window to
20-40 bp therefore increases the amount of corre-
lated structural signal to aid in classification, even
if not all added positions are shown to explicitly
influence local DNA geometry.

Indeed, we observe a general increase in F1
score up to a 40 bp context window, followed by a

sharp decrease and substantial variance as the win-
dow is further expanded to 100 bp (Figure 3). Im-
portantly, the F1 score remains tightly constrained
between approximately 0.575 and 0.590, indicating
that increased structural context has only a limited
effect on model performance. When sequence fea-
tures at the core motif are additionally included,
slightly higher peak F1 scores are observed though
this is accompanied by a drastic increase in vari-
ance. This suggests that any gain is highly incon-
sistent and may reflect sensitivity to noise rather
than robust sequence-driven signal.

Taken together, these results suggest that struc-
tural information provides modest gains while us-
ing classic ML methods. Based on existing lit-
erature, larger context windows should increase
classification performance, however these methods
struggle to best leverage them. From these points,
we conclude that classic ML methods cannot fully
capture the complexity of TFBSs and their struc-
tural properties.

5.2.2 Deep Learning Models
Deep learning models, including MLP and 1D-
CNN, achieved comparable performance to XG-
Boost under the experimental setting tests. While
both architectures benefited marginally from the in-
clusion of structural context, neither demonstrated
clear advantages over traditional models, despite
their increased capacities. Our results are not
entirely consistent with prior successes of deep
learning in regulatory genomics and highlights sev-
eral important TFBS-prediction-task-specific con-
straints.

In particular, we have three possible explanations
for the underperforming:

1. We did not perform enough of a hyperparame-
ter search.

2. Sequence data was omitted completely.

3. PAX5 itself is a difficult TF to characterize
due to its underlying biology.

In deep learning, there are many different pa-
rameters such as training length, network depth,
number of parameters in a network, learning rate,
and many others. All of which may significantly
impact final performance metrics, leading to under-
performing if not well executed.

Furthermore, all deep learning models were
trained exclusively on structural features and PWM
information, with sequence data being omitted



based on earlier ablation results. While this de-
sign choice reduced input dimensionality and noise
brought about through sparse one-hot encoded rep-
resentations, it may also have limited the advantage
of deeper, more expressive architectures, which
have proven to be effective at learning rich repre-
sentations directly from raw sequence (Kelley et al.,
2016; Quang and Xie, 2016).

Finally, the lack of substantial improvement for
CNNs is unexpected given their prior success in
capturing local regulatory dependencies. Previous
CNN methods Basset and DanQ are trained on
prediction tasks that for intervals ranging from 600-
1000 base pairs (Kelley et al., 2016; Quang and Xie,
2016). In contrast, our problem of TFBS binding
classification focuses on narrow genomic intervals
where distinguishable features are sparse and sub-
tle. This makes the PAX5 binding prediction task
especially difficult as its motif window is short (16
base pairs), and has a weak motif signal.

5.3 Limitations
Despite these insights, several limitations remain.
Generally, TFBS genomic intervals are inherently
small and may not always contain sufficient con-
textual information for deeper architectures. For
sequence-based information, this is especially true
when the motif signal is highly weak or variable.
Although we extend the context window to combat
this, it remains limited to structural features and
does not account for any distal regulatory interac-
tions that may be present, resulting in marginal
gains at best. Additionally, we rely entirely on pre-
dicted DNA shape features which may introduce
noise in challenging regions. While DNAShape
and GBShape are quite accurate on average, high-
resolution experimental data could help validate or
refine these predictions (Zhou et al., 2013; Chiu
et al., 2015).

We report no significant gains from including
one-hot sequence encodings in the TFBS predic-
tion task. However, other models such as Basset
or DanQ, which rely entirely on sequence infor-
mation, display commendable results in cell-type-
specific chromatin accessibility prediction (Kelley
et al., 2016; Quang and Xie, 2016). This suggests
two constraints in our current framework: (1) our
models are not deep enough to capture complex
sequence signals that larger architectures can learn,
and (2) the inherently small sequence windows for
TFBS prediction task, combined with the weak
and degenerate PAX5 motif cannot provide ample

sequence signal for deeper models.
Finally, our evaluation is limited to a single TF,

PAX5. We were primarily interested in determining
the usefulness of including DNA shape features, a
setting where PAX5 is an appropriate test case due
to its degenerate motif and shape-sensitive binding
mechanisms. However, our results may not gen-
eralize to TFs with stronger sequence specificity
or different structural binding dynamics and addi-
tional TFs should be examined.

5.4 Future Work

Future work should address the limitations de-
scribed. In particular, there should be better hy-
perparameter searching, sequence data inclusion,
and experimenting on other important TFs from
the lymphoblast cell line.

Further exploration on deeper architectures
would also prove beneficial, as they can better
incorporate sequence information. Such models
include transformers or dilated CNNs, as they pro-
vide deeper architectures that can likely uncover
more meaningful sequence patterns than the shal-
lower architectures tested here. This would enable
the sequence to also be expanded across the con-
text window and allow characterization of larger
DNA regions or additional genomic signals beyond
the local context of the core motif to capture more
factors that influence TF binding. Regarding the
structural information, leveraging or benchmark-
ing against experimentally measured DNA shape
data, when available, could help assess how much
model performance depends on limitations in cur-
rent structural prediction tools.

Finally, once a more reliable classifier is estab-
lished, in silico perturbation studies can be per-
formed on DNA physical properties to predict how
certain conditions may affect TFBS binding and
potentially uncover disease mechanisms or progres-
sion.

6 Conclusion

In conclusion, this work demonstrates that DNA
structural properties can capture meaningful as-
pects of PAX5 binding that are not fully explained
by sequence alone. Our results reinforce biologi-
cal findings where shape contributes substantially
to recognition, particularly at degenerate motifs.
By systematically evaluating sequence and shape
features across multiple ML frameworks, we show
that structural information provides consistent pre-



dictive value, while sequence-only models yielded
mixed and ultimately inconclusive results. To-
gether, these findings highlight the importance of
integrating structural signals when modeling TF-
DNA interactions. While deeper models capable
of leveraging sequence data, experimental shape
measurements, and broader TF coverage remain
promising directions, our results establish a clear
baseline that DNA shape is indeed a critical com-
ponent of TFBS prediction.
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A Appendix

A.1 Scikit-Learn Model Performance
Table 4 outlines the different traditional ML meth-
ods and their performance on different input modal-
ities. XGBoost performs the best, while structural,
sequence, and PWM or structural and PWM modal-
ities are the best types of input.

Architecture Accuracy ROC AUC F1 Score PR AUC
Motif Score

LOGREG 0.6856 0.6976 0.3409 0.5123
RANDOM_FOREST 0.6391 0.6603 0.4492 0.4682
SVM 0.6856 0.6976 0.3409 0.5123
XGBOOST 0.6899 0.6999 0.2755 0.5148

PWM
LOGREG 0.6806 0.7204 0.3643 0.5141
RANDOM_FOREST 0.7318 0.7975 0.5409 0.6388
SVM 0.6810 0.7213 0.3646 0.5155
XGBOOST 0.7458 0.8148 0.5594 0.6605

Struct + PWM
LOGREG 0.6951 0.7493 0.4389 0.5479
RANDOM_FOREST 0.7399 0.8118 0.5210 0.6626
SVM 0.6942 0.7504 0.4331 0.5489
XGBOOST 0.7533 0.8279 0.5815 0.6874

Seq + PWM
LOGREG 0.6849 0.7450 0.4013 0.5322
RANDOM_FOREST 0.7320 0.7957 0.5360 0.6361
SVM 0.6852 0.7466 0.4008 0.5336
XGBOOST 0.7455 0.8183 0.5694 0.6666

Struct + Seq + PWM
LOGREG 0.6955 0.7540 0.4477 0.5559
RANDOM_FOREST 0.7405 0.8082 0.5200 0.6585
SVM 0.7180 0.7769 0.5014 0.5885
XGBOOST 0.7520 0.8277 0.5809 0.6874

Table 4: Unified comparison across all input modes and
classical ML architectures. Motif score indicates the
scalar PWM score, PWM refers to the joint motif score
and per-position PWM probability, structure refers to
all five MGW, HelT, ProT, Roll, and OC2 structural
data, and sequence refers to the one-hot encoding per
nucleotide. Bold indicates the best value in each column,
and italic indicates the second best.

A.2 Deep Learning Architectures
A.2.1 Multi-Layer Perceptron
MLPs are universal function approximators, learn-
ing the proper function through seeing enough

training data (Rumelhart et al., 1986; Rosenblatt,
1958). TFBS is one such task that takes in a high-
dimensional vector and classifies to either binded
or not, represented as either a 0 or 1. For the
multi-layer perceptron, we create separate MLPs
per structural feature and probability weight matrix
scores that is activated with ReLU and is 2 layers
deep, with user-specified hidden size. In the ab-
lations, this hidden size is set to 128. Then each
of these features are concatenated alongside the
aggregated motif score to predict a final class using
a 3-layer MLP with a final hidden size of 64. Refer
to the MLP model class for more details.

Figure 4: MLP Architecture

A.2.2 Variational Autoencoders
Shown in Figure 5, the variational autoencoder
has a two-step approach, where we first pretrained
an autoencoder, then used the embedding space
with an MLP layer to do classification. However,
this did not reveal anything interesting, most likely
because although the input features were somewhat
high dimensional, they were not so complicated
that they needed a separate embedding space. Refer
to the VAE model class for more details.

Figure 5: VAE Architecture

A.2.3 1D Convolutional Neural Network
CNNs can also be used for classification, famously
applied to structured data where local context is
important, such as the MNIST image classifica-
tion. Due to the importance of local effects in DNA

https://doi.org/10.1016/j.omtn.2021.02.014
https://doi.org/10.1016/j.omtn.2021.02.014
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https://doi.org/10.1093/nar/gkt437
https://doi.org/10.1093/nar/gkt437
https://github.com/ehuan2/tf-binding/blob/main/src/models/mlp.py
https://github.com/ehuan2/tf-binding/blob/main/src/models/vae.py


structure, we hypothesized that using CNNs will be
able to better leverage the context window lengths.

As depicted in Figure 6, the 1D convolutional
neural network learns separate convolutions per
feature, leading to separate feature vectors which
are further convolved on. Then, by aggregating a
final 1D feature vectors, we run it through an MLP
for classification. Refer to the CNN model class
for more details.

A.2.4 2D Convolutional Neural Network
Similar to 1D convolutional neural networks, the
2D convolutional neural networks (Figure 7) in-
stead have a 2D convolution, creating 2D vectors
at each stage. Refer to the 2D CNN model class
for more details.

https://github.com/ehuan2/tf-binding/blob/main/src/models/cnn.py
https://github.com/ehuan2/tf-binding/blob/main/src/models/twodcnn.py


Figure 6: 1D CNN Architecture

Figure 7: 2D CNN
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